Adaptive Posterior Mode Estimation of a Sparse Sequence for Model Selection

نویسنده

  • SYLVAIN SARDY
چکیده

For the problem of estimating a sparse sequence of coefficients of a parametric or nonparametric generalized linear model, posterior mode estimation with a Subbotin(λ, ν) prior achieves thresholding and therefore model selection when ν ∈ [0, 1] for a class of likelihood functions. The proposed estimator also offers a continuum between the (forward/backward) best subset estimator (ν = 0), its approximate convexification called lasso (ν = 1) and ridge regression (ν = 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis

Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Adaptive Markov chain Monte Carlo for Bayesian Variable Selection

We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...

متن کامل

Sparse linear models: Variational approximate inference and Bayesian experimental design

A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009